Another page (shortly to be written) will cover some general principles including that
gas is usually cheaper and more environmentally sound than electricity for domestic
heating applications.
- Q. "If every household [in the USA] replaced just three 60-watt incandescent light bulbs with CFLs
[low-energy compact-fluorescents], we would reduce as much pollution as if we took 3.5 million cars off the
roads!", claims the US Environmental
Defense organisation. Is that realistic?
If you assume the three bulbs swapped across 100 million households are used for around
six hours per day, then the saving is comparable to fuel used by 3.5 million typical US cars.
Significance - each household could make similar savings
by cutting their own car-use by just 1.2 miles per day.
Calculations: CFL lamp savings comparison to cars
Typical energy use patterns in the UK
Ofgem (the energy regulator) is widely quoted stating that the average UK household consumes 3300 kWh electricity
and 20500 kWh of gas annually. [Although I haven't yet found a definite source, apparently these figures date from 1999.]
Figures for 2003 put the average electricity figure at the rather higher value of 4600 kWh.
Source for recent UK gas and electricty consumption figures (including regional breakdown):
http://www.dti.gov.uk/files/file20328.pdf
British cars are usually reckoned to have a typical annual mileage of 10000 miles.
4600 kWh electricity | 2500 kg CO2 | 680 kg carbon |
20500 kWh gas | 3900 kg CO2 | 1060 kg carbon |
10000 car miles | 2900 kg CO2 | 790 kg carbon |
Note: to convert kgCO2 to kg carbon, multiply by (3/11) [molecular weight CO2 is 12+(16×2)=44, atomic weight of carbon is 12. 12/44 is equivalent to 3/11.]
[Annual figures for USA car, 12500 miles, 21.5mpg, 5000 kg CO2]
Examples from my house
Modest 3-bed terrace (built in 1980) in the south of England, double-glazed, 3 occupants.
Gas central heating/hot water, gas cooker, electric shower. Electric washing machine, no tumble dryer.
Appliances probably UK-typical and about 5 years old.
Household electricity consumption (July 05 - July 06): 2400 kWh
Household gas consumption (July 05 - July 06): 11700 kWh
Car miles: very few. I don't own a car, cycle/walk daily to work, use trains for longer journeys
Tall larder fridge (250 litres), "energy efficiency class B" rated at 226 kWh/year
Tall upright freezer (181 litres), "energy efficiency class C" rated 418 kWh/year
Kettle usage estimated at 160kWh/year
Combined TV/satellite box standby power c.20watts, 175kWh/year
From a purely technical perspective (and I firmly believe technical problems need technical solutions, not
just political rhetoric), the easiest ways to make the biggest savings in energy costs (i.e. money) and CO2
are:
- Reduce the extent and temperature of heating in the house - turn down the thermostat, use timeswitches to not heat the house when it is unoccupied, turn down the heating in rarely-used rooms
- Avoid using electricity for heating (house/hot-water/oven etc) - for the same amount of heat, gas is around one third the price and produces 60% less CO2.
- Reduce car journeys and/or use a smaller more fuel-efficient vehicle - walking/cycling will also warm you from within, allowing you to feel comfortable in buildings which are less extravagently heated
- Don't use a tumble-dryer - dry clothes outside or in an unheated outhouse with good airflow. It takes a lot of energy to evaporate water!
- It's also nice to recycle aluminium (cans/foil/trays/lids/...), as aluminium manufacture is extremely energy intensive; it
requires 16kWh of electricity to refine 1kg of virgin aluminium. Put another way, making new aluminium for a single 20g drinks-can uses
as much electricity as running a conventional 40W bulb for 8 hours. Recyling aluminium uses only 5% as much energy.
Source for aluminium energy 16kWh/kg: http://www.world-aluminium.org/production/smelting/index.html
CO2 emissions figure
Standardised CO2 emission figures for common fuels are published by the British government,
and these are the official factors for British businesses to use when making any environmental
claims. For electricity the amount of CO2 emitted per kilowatt-hour (kWh) of electricity
depends heavily on the method of generation; nuclear should be zero (or a bit more than zero if you
take into account consequential emissions - fuel mining/purifying/concentration/transport - and power
station construction and demolition), coal will produce a lot of CO2, and gas somewhat less.
Consequently the official figure for electricity is a weighted average taking into account the mix of
types of generating stations which provide electricity to the UK.
Key figures I'll be using here are:
Electricity | 0.43 kg CO2 per kWh [0.54 kg CO2 per kWh *] |
Natural Gas | 0.19 kg CO2 per kWh |
Coal | 0.32 kg CO2 per kWh |
Petrol (gasoline) | 0.24 kg CO2 per kWh 2.30 kg CO2 per litre 0.30 kg CO2 per mile, in a typical car |
Diesel fuel | 0.25 kg CO2 per kWh 2.63 kg CO2 per litre |
* The standardised figure of 0.43 kgCO2/kWh should be used to allow year-on-year comparisons until 2010.
However, as nuclear stations become decommisioned and the fuel mix changes the actual CO2
estimation varies slightly from year to year. The most recent official estimate, for the year 2003 mix, is
0.54 kgCO2/kWh for electricity.
The full set of figures, qualifications and footnotes can be found at:
http://www.defra.gov.uk/environment/business/envrp/gas/envrpgas-annexes.pdf.
Calculations and reasoning
Electric kettle vs boiling water on the hob
As an experiment I tried different ways of boiling 0.5 litre of water (measured using a small
measuring jug).
N.B. 1kWh=3600kJ (because by definition 1 Watt is 1 Joule per second, and there are 3600 seconds in an hour).
Plastic electric jug-kettle (2200W rating)
Time to boil: 1m40s (100 seconds)
Energy used: 100s×2200J/s = 220000J = 220kJ
220kJ / 3600kJ/kWh = 0.061 kWh. Using 0.54 kgCO2/kWh gives 33 grammes CO2
Small-sized electric hob at full power (1200W rating)
In medium/small aluminium saucepan weighing 0.374kg
Time to boil: 9m00s (540 seconds) for vigorous boil [8m00s for begin to boil]
Energy used: 540s×1200J/s = 648000J = 648kJ
648kJ / 3600kJ/kWh = 0.180 kWh. Using 0.54 kgCO2/kWh gives 97 grammes CO2
Medium-sized gas hob burner at full power (2000W rating)
In medium/small non-stick aluminium saucepan weighing 0.337kg
Time to boil: 6m00s (360 seconds) for a decent rolling boil [5m20s for lazy bubbling boil]
Energy used: 360s×2000J/s = 720000 = 720kJ
720kJ / 3600kJ/kWh = 0.200 kWh. Using 0.19 kgCO2/kWh gives 38 grammes CO2
The electric hob is easily the worst option, costing three times as much energy and CO2 as the kettle.
Although the gas hob still results in almost three times as much energy (heat) being delivered to the
home, this comes at very little extra CO2 cost. If that warmth is useful to you, then why not?
On the other hand, because the hob takes longer you're more likely to forget about it and/or leave the
water boiling for longer than necessary, which uses more energy and will also put more humidity into the house.
Further considerations might include whether using a saucepan is going to result in extra washing-up, and
whether you really want the extra humidity from the burner and drying the saucepan afterwards...
Swapping a few light bulbs per house equivalent to millions of cars off the road?
If each house swapped three 60W bulbs for CFLs using one quarter the energy (15W), and they were used say
six hours per day, the saving would be about 6 hours×3×0.045 kW = 0.8kWh per house per day.
Using 0.6 kg CO2/kWh electricity [USA figure],
that's 0.49kg CO2 per day. Multiplying up for 100 million households in the USA,
over 365 days in the year I make that 17751150000kg CO2 per year.
According to http://www.epa.gov/otaq/consumer/f00013.htm
the average US car does 12500 miles per year, at [just!] 21.5 mpg.
12500 miles / 21.5mpg = 580 gallons = 2200 litres = 5000 kg CO2 per car per year.
Dividing 17751150000kg CO2
saved by all the houses installing CFLs by 5000 kg CO2 per car per year indeed gives about 3500000 car-equivalents.
BUT this completely misses the point that each household could make exactly the same savings by driving
their gas-guzzling cars 1.2 miles less per day.
Essential reading
For further quantitative analysis of energy issues (with a UK bias), I thoroughly recommend you download the summary or book from
http://www.withouthotair.com/.
You might also like to read the blog http://withouthotair.blogspot.com/
Given infinite time, I would have liked to have written something like these, but no need - David MacKay has already done it!
Created: October 2006
Last modified: 23 June 2008
Source: http://www.techmind.org/energy/calcs.html
©2006-8 William Andrew Steer
andrew.ecalc@techmind.org